
Optimization with Constraints using a Cultured Differential
Evolution Approach

Ricardo Landa Becerra
Evolutionary Computation Group (EVOCINV)

CINVESTAV-IPN
Computer Science Section

Electrical Engineering Department
México, D.F., 07300, MEXICO

rlanda@computacion.cs.cinvestav.mx

Carlos A. Coello Coello
Evolutionary Computation Group (EVOCINV)

CINVESTAV-IPN
Computer Science Section

Electrical Engineering Department
México, D.F., 07300, MEXICO

ccoello@cs.cinvestav.mx

ABSTRACT
In this paper we propose a cultural algorithm, where differ-
ent knowledge sources modify the variation operator of a dif-
ferential evolution algorithm. Differential evolution is used
as a basis for the population, variation and selection pro-
cesses. The experiments performed show that the cultured
differential evolution is able to reduce the number of fitness
function evaluations needed to obtain a good aproximation
of the optimum value in constrained real-parameter opti-
mization. Comparisons are provided with respect to three
techniques that are representative of the state-of-the-art in
the area.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Constrained
optimization, Global optimization; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search—
Heuristic methods

General Terms
Algorithms, design

Keywords
Constraint handling, optimization, cultural algorithms, dif-
ferential evolution

1. INTRODUCTION
Evolutionary computation is an increasingly popular dis-

cipline, mainly due to the successful results obtained in
many types of optimization problems [1, 18]. However, evo-
lutionary computation techniques are considered “blind heuris-
tics” because they do not normally require information about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

the problem but only the assessment of the quality of the so-
lutions produced (through the so-called “fitness function”).

Cultural algorithms are evolutionary computation tech-
niques that extract domain knowledge during the evolution-
ary process aiming to improve performance. In this work,
we explore some of the benefits of this type of incorporation
of domain knowledge when applied to constrained optimiza-
tion problems.

The remainder of this paper is organized as follows. In
Section 2, we provide some basic concepts related to cultural
algorithms together with a brief review of the most impor-
tant previous (related) work. In Section 3, we describe the
basic differential evolution algorithm and we briefly review
the most representative previous work on constrained opti-
mization. In Section 4, we describe our proposed approach.
In Section 5, we compare our approach with respect to tech-
niques representative of the state-of-the-art in the area using
a well-known benchmark. Finally, in Section 6, we draw our
conclusions and provide some possible paths for future re-
search.

2. CULTURAL ALGORITHMS
Cultural algorithms are techniques that add domain knowl-

edge to evolutionary computation methods. They are based
on the assumption that domain knowledge can be extracted
during the evolutionary process, by means of the evaluation
of each point generated [20]. This process of extraction and
use of the information, has been shown to be very effec-
tive in decreasing computational cost while approximating
global optima, in unconstrained, constrained and dynamic
optimization [22, 4, 11, 24].

Cultural algorithms consist of two main components: the
population space, and the belief space [21]. The popula-
tion space consists of a set of possible solutions to the
problem, and can be modeled using any population-based
technique, e.g. genetic algorithms [8]. The belief space is
the information repository in which the individuals can store
their experiences for the other individuals to learn them in-
directly. In cultural algorithms, the information acquired by
an individual can be shared with the entire population.

Both spaces (i.e., population space and belief space) are
linked through a communication protocol, which states the
rules about the individuals that can contribute to the belief
space with their experiences (the acceptance function), and
the way the belief space can influence to the new individuals

27



Influence

Selection
Performance

Variation

Function

Acceptance

Adjust

Beliefs

Population

Figure 1: Spaces of a cultural algorithm

(the influence function). Those interactions are depicted in
Figure 1.

Originally, when cultural algorithms were applied to real
parameter optimization, genetic algorithms were used as a
population space [20].

Later on, evolutionary programming appeared as a better
choice [3] for the population space than genetic algorithms
when dealing with unconstrained search spaces. The evo-
lutionary programming algorithm was the most commonly
used search engine in cultural algorithms [4, 11, 5], until the
advent of particle swarm optimization [12] in [10], which
shed light regarding the potential use of new evolutionary
methods with better performance in real parameter opti-
mization.

Differential evolution [19] is a recently developed evolu-
tionary algorithm, focused on the solution of real paramenter
optimization problems. Differential evolution has been found
to be a very robust optimization technique [26]. However,
to the authors’ best knowledge, we are the first to propose
the use of differential evolution as the population space of a
cultural algorithm.

2.1 Previous Work
Reynolds et al. [22] and Chung & Reynolds [4] have ex-

plored the use of cultural algorithms for global optimization
with very encouraging results.

Chung and Reynolds use a hybrid of evolutionary pro-
gramming and GENOCOP [22] in which they incorporate
an interval constraint-network to represent the constraints
of the problem at hand.

In [4], Chung and Reynolds use evolutionary programming
with a mutation operator influenced by the best individual
found so far, and the intervals where good solutions have
been found. They call their approach “CAEP”, or Cultural
Algorithms with Evolutionary Programming.

In more recent work, Jin and Reynolds [11] proposed an n-
dimensional regional-based schema, called belief-cell, as an
explicit mechanism that supports the acquisition, storage
and integration of knowledge about non-linear constraints
in a cultural algorithm. The idea of Jin and Reynolds’ ap-
proach is to build a map of the search space which is used to

derive rules about how to guide the search of the evolution-
ary algorithm (avoiding infeasible regions and promoting the
exploration of feasible regions).

Using the same population space (evolutionary program-
ming), Saleem proposes a cultural algorithm for dealing with
dynamic environments [24], which adds two more ways to
incorporate domain knowledge to CAEPs, in addition to
the existing Chung’s and Jin’s proposals. These knowledge
sources are designed to extract patterns in environmental
changes.

Using as a basis the work of Jin and Reynolds, an algo-
rithm for constrained optimization was developed in [5, 6],
where a spatial data structure is incorporated to store the
map of the feasible region, and also new rules are used in
several phases of the algorithm.

In [10], Iacoban et al. change the evolutionary program-
ming algorithm of the population space for a particle swarm
optimizer [12]. They make an analysis of the effects of the
belief space over the evolutionary process, showing the sim-
ilarities with the approach in which evolutionary program-
ming is adopted, and identifying the phases of the search
process with a belief space.

3. DIFFERENTIAL EVOLUTION
Differential evolution is an evolutionary algorithm orig-

inally proposed by Price and Storn [19, 25], whose main
design emphasis is real parameter optimization. Differential
evolution is based on a mutation operator, which adds an
amount obtained by the difference of two randomly chosen
individuals of the current population, in contrast to most of
the evolutionary algorithms, in which the mutation operator
is defined by a probability function.

The basic algorithm of differential evolution is shown in
Figure 2, where the problem to be solved has n decision
variables, F and CR are parameters given by the user, and
xi,j is the i-th decision variable of the j-th individual in the
population.

The authors of the differential evolution algorithm have
suggested that by computing the difference between two in-
dividuals randomly chosen from the population, the algo-
rithm is actually estimating the gradient in that zone (rather
than in a point). This approach also constitutes a rather ef-
ficient way to self-adapt the mutation operator.

Another important feature of the differential evolution
algorithm, is the local criterion of the selection operator,
which is efficient and fast.

The version of differential evolution shown in Figure 2, is
called DE/rand/1/bin, and is recommended to be the first
choice when trying to apply differential evolution to any
given problem [19]. That is the reason why we adopted it
for the work reported in this paper. However, there are
some other versions of the differential evolution algorithm,
and the modifications made here to the variation operator
may have certain similarities with some of those versions.

3.1 Differential Evolution in Constrained
Optimization

There have been very few approaches for handling con-
straints based on differential evolution. We will review next
the most representative of them.

One of the original developers of differential evolution,
Storn, proposed constraint adaptation [26], in which all the
constraints of the problem at hand are relaxed, so that all

28



Generate initial population of size popsize
Do

For each individual j in the population
Generate three random integers, r1, r2 and r3 ∈ (1, popsize),

with r1 �= r2 �= r3 �= j
Generate a random integer irand ∈ (1, n)
For each parameter i

x
′
i,j =


xi,r3 + F ∗ (xi,r1 − xi,r2) if rand(0, 1) < CR or i = irand

xi,j otherwise
End For

Replace xj with the child x
′
j , if x

′
j is better

End For
Until the termination condition is achieved

Figure 2: Pseudo-code of the differential evolution algorithm adopted in this work (this version is called
DE/rand/1/bin)

the individuals in the initial population become feasible.
The constraints are reduced toward their original versions
at each generation, but the individuals must always remain
feasible (i.e., different relaxations are applied at each gener-
ation). The author says that this approach is not suitable
for handling equality constraints, and one of its main ap-
plications is constraint satisfaction (where only constraint
violation is important, and there is no objective function).

Another constraint handling technique is the one proposed
by Lampinen [15]. He states some rules for the replacement
made during the selection procedure, that can be summa-
rized as follows:

• If both individuals are feasible, the one with a better
value of the objective function always wins.

• If the newly generated individual is feasible, as his par-
ent is infeasible, the new individual is used for the next
generation.

• If both individuals are infeasible, the parent is replaced
if the new individual has lower or equal violation for
all the constraints.

The rest of the differential evolution algorithm remains the
same. The experiments are done with 10 of the 11 test func-
tions proposed in [13]. A previous version of this algorithm
appeared in [14], where the replacement rules were not as
complete as in [15], and less test problems were taken into
account.

Simultaneously to Lampinen, Lin et al. [16] proposed
the use of an augmented Lagrangian function to guide the
search, with a newly developed method to update the mul-
tipliers. In a first phase, the multipliers are constant and
the problem is minimized. During a second phase, the mul-
tipliers are updated and the algorithm tries to maximize the
dual function.

Lin et al. [16] called their approach hybrid differential
evolution, because they add some new steps to the original
algorithm. Such steps are acceleration and migration, and
are used when the current population has either too much
or no diversity.

4. OUR PROPOSED APPROACH
Our proposed approach uses differential evolution in the

population space. A pseudo-code of our approach (called
cultured differential evolution) is shown in Figure 3.

Generate initial population
Evaluate initial population
Initialize the belief space
Do

For each individual in the population
Apply the variation operator influenced by a

randomly chosen knowledge source
Evaluate the child generated
Replace the individual with the child, if the child

is better
End for
Update the belief space with the accepted

individuals
Until the termination condition is achieved

Figure 3: Pseudo-code of the cultured differential
evolution.

In the initial steps of the algorithm, a population of popsize
individuals is created, as well as a belief space. For the off-
spring generation, the variation operator of the differential
evolution algorithm is influenced by the belief space.

Since we want to solve constrained optimization problems,
the objective function by itself does not provide enough in-
formation as to guide the search properly. To determine if a
child is better than its parent, and, therefore, it can replace
it, we use the following rules:

1. A feasible individual is always better than an infeasible
one.

2. If both are feasible, the individual with the best ob-
jective function value is better.

3. If both are infeasible, the individual with less amount
of constraint violations is better.

The amount of constraint violation is measured with nor-
malized constraints, with the use of the following expression:

viol(xj) =
constrX

c=1

gc(xj)

gmaxc

where gc(x) are the constr constraints of the problem, and
gmaxc is the greatest violation found of the constraint gc(x)
found so far.

29



l1 u1 l2 u2 · · · ln un

L1 U1 L2 U2 · · · Ln Un

dm1 dm2 . . . dmn

Figure 4: Structure of the normative knowledge

4.1 The Belief Space
In our approach, the belief space is divided in four knowl-

edge sources, described next.

4.1.1 Situational Knowledge
Situational knowledge consists of the best exemplar E

found along the evolutionary process. It represents a leader
for the other individuals to follow.

To initialize the situational knowledge, it is necessary to
have an initial population, so that we can find the best in-
dividual and store it.

The variation operators of differential evolution are influ-
enced in the following way:

x
′
i,j = Ei + F ∗ (xi,r1 − xi,r2)

where Ei is the i-th component of the individual stored in
the situational knowledge. This way, we use the leader in-
stead of a randomly chosen individual for the recombination.
This has the effect of pushing the children closer to the best
point found.

This way of influencing the variation operator was previ-
ously proposed in [25], and is called DE/best/1/bin (if the
other mechanisms remain the same as in DE/rand/1/bin; in
fact, the word “rand” or “best” indicates if the individual r3
is chosen at random or is the best of the population). The
difference with that previous proposal is that we use several
modifications of the variation operator, and not only one.

The update of the situational knowledge is done by replac-
ing the stored individual, E, by the best individual found in
the current population, xbest, only if xbest is better than E.

E =


xbest if xbest is better than E
E otherwise

4.1.2 Normative Knowledge
The normative knowledge contains the intervals for the

decision variables where good solutions have been found, in
order to move new solutions towards those intervals. Thus,
the normative knowledge has the structure shown in Fig-
ure 4.

In Figure 4, li and ui are the lower and upper bounds,
respectively, for the i-th decision variable, and Li and Ui

are the values of the fitness function associated with that
bound. Also, the normative knowledge includes the values
dmi, to influence the mutation operator adopted in differ-
ential evolution.

To initialize the normative knowledge, all the bounds are
set to the intervals given as input data of the problem. Li

and Ui are set to +∞, assuming a minimization problem,
and dmi = ui − li, for i = 1, 2, . . . , n.

The following expression shows the influence of the nor-

mative knowledge on the variation operators:

x
′
i,j =

8<
:

xi,r3 + F ∗ |xi,r1 − xi,r2| if xi,r3 < li
xi,r3 − F ∗ |xi,r1 − xi,r2| if xi,r3 > ui

xi,r3 + ui−li
dmi

∗ F ∗ (xi,r1 − xi,r2) otherwise

We introduce the scaling factor ui−li
dmi

for the mutation to

be proportional to the interval of the normative knowledge
for the i-th decision variable. The values dmi are initialized
with ui − li to have a null influence at the first generation.

The update of the normative knowledge is as follows: let
xa1, xa2, . . . , xanaccepted be the accepted individuals in the
current generation, and xmini and xmaxi , withmini,maxi ∈
{a1, a2, . . . , naccepted}, be the individuals with minimum and
maximum values for the parameter i between the accepted
individuals, then

li =


xi,mini if xi,mini < li ∨ f(xmini) < Li

li otherwise

and

ui =


xi,maxi if xi,maxi > ui ∨ f(xmaxi) < Ui

ui otherwise

In words, the update will reduce or expand the intervals
stored in the normative knowledge. An expansion takes
place when the accepted individuals do not fit in the cur-
rent interval, while a reduction occurs when all the accepted
individuals lie inside the current interval, and the extreme
values have a better fitness and are feasible.

If the values of li or ui are updated, the same must be
done with Li or Ui.

The values dmi are updated with the largest difference
|xi,r1 − xi,r2| found during the application of the variation
operators at the previous generation.

4.1.3 Topographical Knowledge
The usefulness of the topographical knowledge is to cre-

ate a map of the fitness landscape of the problem during
the evolutionary process. It consists of a set of cells, and
the best individual found on each cell. The topographical
knowledge, also, has an ordered list of the best b cells, based
on the fitness value of the best individual on each of them.
For the sake of a more efficient memory management, in
the presence of high dimensionality (i.e., too many decision
variables), we use an spatial data structure, called k-d tree,
or k-dimensional binary tree [2]. In k-d trees, each node can
only have two children (or none, if it is a leaf node), and
represents a division in half for any of the k dimensions (see
Figure 5).

To initialize the topographical knowledge, we only create
the root node, which represents the entire search space, and
contains the best solution found in the initial population.

The influence function tries to move the children to any
of the b cells in the list:

x
′
i,j =

8<
:

xi,r3 + F ∗ |xi,r1 − xi,r2| if xi,r3 < li,c
xi,r3 − F ∗ |xi,r1 − xi,r2| if xi,r3 > ui,c

xi,r3 + F ∗ (xi,r1 − xi,r2) otherwise

where li,c and ui,c are the lower and upper bounds of the
cell c, randomly chosen from the list of the b best cells.

The update function splits a node if a better solution is
found in that cell, and if the tree has not reached its max-
imum depth. The dimension in which the division is done,
is the one that has a greater difference between the solution

30



LIH N

GFB

J

K

E M O

CA

D

A

H I K L N OMJ

ED F G

B C

Figure 5: Example of the partition of a two dimen-
sional space by a k-d tree

e1 · · · ei · · · ew

ds1 ds2 · · · dsn

dr1 dr2 · · · drn

Figure 6: Structure of the history knowledge

stored and the new reference solution (i.e., the new solution
considered as the “best” found so far).

4.1.4 History Knowledge
This knowledge source was originally proposed for dy-

namic objective functions, where it was used to find pat-
terns in the environmental changes [24]. History knowledge
records in a list, the location of the best individual found
before each environmental change. That list has a maximum
size w.

The structure of the history knowledge is shown in Fig-
ure 6, where ei is the best individual found before the i-
th environmental change, dsi is the average distance of the
changes for parameter i, and dri is the average direction if
there are changes for parameter i. In our approach, instead
of detecting changes of the environment, we store a solution
if it remains as the best one during the last p generations.
If this happens, we assume that we are trapped in a local
optimum.

The expression of the influence function of the history
knowledge is the following:

x
′
i,j =

8<
:

ei,1 + dri ∗ F ∗ |xi,r1 − xi,r2| if rand(0, 1) < α

ei,1 + dsi
dmi

∗ (xi,r1 − xi,r2) if rand(0, 1) < β

rand(lbi, ubi) otherwise

where ei,1 is the i-th decision variable of the previous best e1

stored in the list of the history knowledge, dmi is the maxi-
mum difference for the i-th variable, stored in the normative
knowledge, lbi and ubi are the lower and upper bounds of the
variable xi, given as input for the problem, and rand(a, b)
is a random number between a and b.

To update the history knowledge, we add to the list any
local optima found during the evolutionary process. If the
list has reached its maximum length w, the oldest element
is discarded. The average distances and directions of change
are calculated by:

dsi =

Pw−1
k=1 |ei,k+1 − ei,k|

w − 1

dri = sgn

 
w−1X
k=1

sgn (ei,k+1 − ei,k)

!

where the function sgn(a) returns the sign of a.

4.2 Acceptance Function
The number of individuals accepted for the update of the

belief space is computed according the design of a dynamic
acceptance function proposed by Saleem [24]. The number
of accepted individuals decreases as the generation number
increases.

Saleem [24] suggests to reset the number of accepted indi-
viduals when an environmental change occurs. In our case,
we reset the number of accepted individuals when the best
solution has not changed in the last p generations.

We get the number of accepted individuals, naccepted, with
the following expression:

naccepted =

—
%p ∗ popsize+ (1−%p) ∗ popsize

g




where %p is a parameter given by the user, within the range
(0, 1]; Saleem [24] suggests using 0.2. g is the generation
counter, but is reset to 1 when the best solution has not
changed in the last p generations.

4.3 Main Influence Function
The main influence function is responsible for choosing the

knowledge source to be applied to the variation operator of
differential evolution. At the beginning, all the knowledge
sources have the same probability to be applied, %pks = 1

4
,

because there are 4 knowledge sources; but during the evo-
lutionary process, the probability of the knowledge source
ks to be applied is:

%pks = 0.1 + 0.6
vks

v

where vks are the times that an individual generated by the
knowledge source ks outperforms its parent in the current
generation, and v are the times that an individual generated
(by any knowledge source) outperforms its parent in the
current generation. The lower bound of %p is the arbitrary
value 0.1, to ensure that any knowledge source has always a
probability > 0 to be applied. If v = 0 during a generation,
%pks = 1

4
, as in the beginning.

5. COMPARISON OF RESULTS
To validate our approach, we adopted the well-known

benchmark originally proposed in [17] and extended in [23]
which has been often used in the literature to validate new

31



Results of the cultured differential evolution algorithm
Problem Optimal Best Mean Worst St. Dev.

g01 -15 -15.000000 -14.999996 -14.999993 0.000002
g02 0.803619 0.803619 0.724886 0.590908 0.070125
g03 1 0.995413 0.788635 0.639920 0.115214
g04 -30665.539 -30665.538672 -30665.538672 -30665.538672 0.000000
g05 5126.4981 5126.570923 5207.410651 5327.390497 69.225796
g06 -6961.8138 -6961.813876 -6961.813876 -6961.813876 0.000000
g07 24.3062091 24.306209 24.306210 24.306212 0.000001
g08 0.095825 0.095825 0.095825 0.095825 0.000000
g09 680.6300573 680.630057 680.630057 680.630057 0.000000
g10 7049.25 7049.248058 7049.248266 7049.248480 0.000167
g11 0.75 0.749900 0.757995 0.796455 0.017138
g12 1 1.000000 1.000000 1.000000 0.000000
g13 0.0539498 0.056180 0.288324 0.392100 0.167095

Table 1: Results obtained by our cultured differential evolution approach

constraint-handling techniques. For a further description of
those problems, refer to [23].

The parameters used by our approach are the following:
popsize = 100, maximum number of generations = 1000, the
factors of differential evolution are F = 0.5 and CR = 1,
maximum depth of the k-d tree = 12, length of the best
cells list b = 10, the size of the list in the history knowledge
w = 5, α = β = 0.45, and %p = 0.2. These parameters were
derived empirically after numerous experiments. For each
test function, we preformed 30 independent runs.

We compare our approach against three state-of-the-art
approaches: the Homomorphous Maps (HM) [13], Stochas-
tic Ranking (SR) [23] and the Adaptive Segregational Con-
straint Handling Evolutionary Algorithm (ASCHEA) [9].
We do not include any differential evolution-based technique
in this comparison, because the reported results do not allow
us to do it. The only approach that uses the cited bench-
mark is the one by Lampinen [15], but he does not report
the complete benchmark, and his results were obtained with
a variable number of fitness function evaluations. The best
results obtained by each approach are shown in Table 2a.
The mean values provided are compared in Table 2b and
the worst results are presented in Table 2c. The results
provided by these approaches were taken from the original
references for each method.

The results of HM were obtained with 1,400,000 eval-
uations of the fitness function, the results of SR required
350,000 evaluations, and the results of the ASCHEA tech-
nique were obtained with 1,500,000 evaluations of the fit-
ness function. Our approach required only 100,100 evalua-
tions.

From the results, we can say that SR is the most competi-
tive constraint handling technique compared here. However,
our approach reached the global optimum in ten problems,
and SR did it in nine. Also, in most cases, the cultured dif-
ferential evolution was more robust, showing a very low stan-
dard deviation, while performing less than one third of the
total number of fitness function evaluations than stochastic
ranking.

ASCHEA is also a very competitive technique, reaching
the optimum in seven problems, but it requires the largest
number of evaluations of the techniques compared here (the
cultured differential evolution required less than a tenth part

of the fitness function evaluations performed by ASCHEA).
HM shows the worst results in this comparison, reaching the
optimum in only three cases.

We can see that the approximations of the optimal val-
ues obtained by the cultured differential evolution are very
competitive in most of the cases, and are obtained with a
low number of fitness function evaluations. This can be
attributed to a faster exploration of the influenced opera-
tors by the belief space. The robustness is a feature of the
search engine (i.e. differential evolution), also increased by
the knowledge sources that allows exploitation, such as the
situational knowledge.

6. CONCLUSIONS AND FUTURE WORK
In this paper a cultural algorithm for constrained opti-

mization was presented. This algorithm uses differencial
evolution as a basis for its population space population. In
a comparison with other three representative techniques of
the state-of-the-art, and using a standard benchmark from
the evolutionary optimization literature, best or equal best
results were obtained in 10 of 13 benchmark problems, with
the important aggregated value that a considerably smaller
number of fitness funtion evaluations was required. This
reduction was our main motivation in designing the belief
space of the cultural algorithm.

Some directions of future work are the analysis of the
impact of each knowledge source during the evolutionary
process. Additionally, we want to explore the benefits of
using a belief space in other types of problems. Specifically,
we are interested in extending our approach so that it can
deal with multiobjective optimization problems [7].

Acknowledgements
The first author acknowledges support from CONACyT to
pursue graduate studies at the Computer Science Section at
CINVESTAV-IPN. The second author gratefully acknowl-
edges support from CONACyT through project 42435-Y.

7. REFERENCES
[1] T. Bäck, D. Fogel, and Z. Michalewicz, editors.

Handbook of Evolutionary Computation, volume 1.

32



Best Results of the compared techniques
Problem Optimal CDE HM SR ASCHEA

g01 −15 −15.000000 −14.7864 −15.000 −15.0
g02 0.803619 0.803619 0.79953 0.803515 0.785
g03 1 0.995413 0.9997 1.000 1.0
g04 −30665.539 −30665.538672 −30664.5 −30665.539 30665.5
g05 5126.498 5126.570923 − 5126.497 5126.5
g06 −6961.814 −6961.813876 −6952.1 −6961.814 −6961.81
g07 24.306 24.306209 24.620 24.307 24.3323
g08 0.095825 0.095825 0.0958250 0.095825 0.095825
g09 680.63 680.630057 680.91 680.630 680.630
g10 7049.25 7049.248058 7147.9 7054.316 7061.13
g11 0.75 0.749900 0.75 0.750 0.75
g12 1.00 1.000000 0.999999 1.000000 NA
g13 0.053950 0.056180 NA 0.053957 NA

a)

Mean Results of the compared techniques
Problem Optimal CDE HM SR ASCHEA

g01 −15 −14.999996 −14.7082 −15.000 −14.84
g02 0.803619 0.724886 0.79671 0.781975 0.59
g03 1 0.788635 0.9989 1.000 0.99989
g04 −30665.539 −30665.538672 −30655.3 −30665.539 30665.5
g05 5126.498 5207.410651 − 5128.881 5141.65
g06 −6961.814 −6961.813876 −6342.6 −6875.940 −6961.81
g07 24.306 24.306210 24.826 24.374 24.66
g08 0.095825 0.095825 0.0891568 0.095825 0.095825
g09 680.63 680.630057 681.16 680.656 680.641
g10 7049.25 7049.248266 8163.6 7559.192 7193.11
g11 0.75 0.757995 0.75 0.750 0.75
g12 1.00 1.000000 0.999134 1.000000 NA
g13 0.053950 0.288324 NA 0.067543 NA

b)

Worst Results of the compared techniques
Problem Optimal CDE HM SR ASCHEA

g01 −15 −14.999993 −14.6154 −15.000 NA
g02 0.803619 0.590908 0.79119 0.726288 NA
g03 1 0.639920 0.9978 1.000 NA
g04 −30665.539 −30665.538672 −30645.9 −30665.539 NA
g05 5126.498 5327.390497 − 5142.472 NA
g06 −6961.814 −6961.813876 −5473.9 −6350.262 NA
g07 24.306 24.306212 25.069 24.642 NA
g08 0.095825 0.095825 0.0291438 0.095825 NA
g09 680.63 680.630057 683.18 680.763 NA
g10 7049.25 7049.248480 9659.3 8835.655 NA
g11 0.75 0.796455 0.75 0.750 NA
g12 1.00 1.000000 0.991950 1.000000 NA
g13 0.053950 0.392100 NA 0.216915 NA

c)

Table 2: Comparison of the best (a), mean (b), and worst (c) results of the cultured differential evolution
(CDE) with respect to the Homomorphous Maps (HM) [13], Stochastic Ranking (SR) [23] and ASCHEA [9].
“-” means no feasible solutions were found. NA = Not Available. An result in bold font means that our
approach obtained the same or a better value than any other of the techniques.

33



IOP Publishing Ltd. and Oxford University Press,
1997.

[2] J. L. Bentley and J. H. Friedman. Data Structures for
Range Searching. ACM Computing Surveys,
11(4):397–409, December 1979.

[3] C.-J. Chung and R. G. Reynolds. A Testbed for
Solving Optimization Problems using Cultural
Algorithms. In L. J. Fogel, P. J. Angeline, and
T. Bäck, editors, Evolutionary Programming V:
Proceedings of the Fifth Annual Conference on
Evolutionary Programming, Cambridge,
Massachusetts, 1996. MIT Press.

[4] C.-J. Chung and R. G. Reynolds. CAEP: An
Evolution-based Tool for Real-Valued Function
Optimization using Cultural Algorithms. Journal on
Artificial Intelligence Tools, 7(3):239–292, 1998.

[5] C. A. Coello Coello and R. Landa Becerra. Adding
knowledge and efficient data structures to evolutionary
programming: A cultural algorithm for constrained
optimization. In E. C.-P. et al., editor, Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO’2002), pages 201–209, San Francisco,
California, July 2002. Morgan Kaufmann Publishers.

[6] C. A. Coello Coello and R. Landa Becerra. Efficient
Evolutionary Optimization through the use of a
Cultural Algorithm. Engineering Optimization,
36(2):219–236, April 2004.

[7] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B.
Lamont. Evolutionary Algorithms for Solving
Multi-Objective Problems. Kluwer Academic
Publishers, New York, May 2002. ISBN 0-3064-6762-3.

[8] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1989.

[9] S. B. Hamida and M. Schoenauer. ASCHEA: New
Results Using Adaptive Segregational Constraint
Handling. In Proceedings of the Congress on
Evolutionary Computation 2002 (CEC’2002),
volume 1, pages 884–889, Piscataway, New Jersey,
May 2002. IEEE Service Center.

[10] R. Iacoban, R. G. Reynolds, and J. Brewster. Cultural
Swarms: Modeling the Impact of Culture on Social
Interaction and Problem Solving. In 2003 IEEE
Swarm Intelligence Symposium Proceedings, pages
205–211, Indianapolis, Indiana, USA, April 2003.
IEEE Service Center.

[11] X. Jin and R. G. Reynolds. Using Knowledge-Based
Evolutionary Computation to Solve Nonlinear
Constraint Optimization Problems: a Cultural
Algorithm Approach. In 1999 Congress on
Evolutionary Computation, pages 1672–1678,
Washington, D.C., July 1999. IEEE Service Center.

[12] J. Kennedy and R. C. Eberhart. Swarm Intelligence.
Morgan Kaufmann Publishers, San Francisco,
California, 2001.

[13] S. Koziel and Z. Michalewicz. Evolutionary
Algorithms, Homomorphous Mappings, and
Constrained Parameter Optimization. Evolutionary
Computation, 7(1):19–44, 1999.

[14] J. Lampinen. Solving Problems Subject to Multiple
Nonlinear Constraints by the Differential Evolution.
In R. M. . P. Osmera, editor, Proceedings of MENDEL
2001, 7th International Conference on Soft
Computing, pages 50–57, June 2001.

[15] J. Lampinen. A Constraint Handling Approach for the
Diifferential Evolution Algorithm. In Proceedings of
the Congress on Evolutionary Computation 2002
(CEC’2002), volume 2, pages 1468–1473, Piscataway,
New Jersey, May 2002. IEEE Service Center.

[16] Y.-C. Lin, K.-S. Hwang, and F.-S. Wang. Hybrid
Differential Evolution with Multiplier Updating
Method for Nonlinear Constrained Optimization. In
Proceedings of the Congress on Evolutionary
Computation 2002 (CEC’2002), volume 1, pages
872–877, Piscataway, New Jersey, May 2002. IEEE
Service Center.

[17] Z. Michalewicz and M. Schoenauer. Evolutionary
Algorithms for Constrained Parameter Optimization
Problems. Evolutionary Computation, 4(1):1–32, 1996.

[18] I. C. Parmee. Evolutionary and Adaptive Computing
in Engineering Design. Springer, London, 2001. ISBN
1-85233-029-5.

[19] K. V. Price. An introduction to differential evolution.
In D. Corne, M. Dorigo, and F. Glover, editors, New
Ideas in Optimization, pages 79–108. McGraw-Hill,
London, UK, 1999.

[20] R. G. Reynolds. An Introduction to Cultural
Algorithms. In A. V. Sebald and L. J. Fogel, editors,
Proceedings of the Third Annual Conference on
Evolutionary Programming, pages 131–139. World
Scientific, River Edge, New Jersey, 1994.

[21] R. G. Reynolds. Cultural algorithms: Theory and
applications. In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 367–377.
McGraw-Hill, London, UK, 1999.

[22] R. G. Reynolds, Z. Michalewicz, and M. Cavaretta.
Using cultural algorithms for constraint handling in
GENOCOP. In J. R. McDonnell, R. G. Reynolds, and
D. B. Fogel, editors, Proceedings of the Fourth Annual
Conference on Evolutionary Programming, pages
298–305. MIT Press, Cambridge, Massachusetts, 1995.

[23] T. P. Runarsson and X. Yao. Stochastic Ranking for
Constrained Evolutionary Optimization. IEEE
Transactions on Evolutionary Computation,
4(3):284–294, September 2000.

[24] S. M. Saleem. Knowledge-Based Solution to Dynamic
Optimization Problems using Cultural Algorithms.
PhD thesis, Wayne State University, Detroit,
Michigan, 2001.

[25] R. Storn. On the Usage of Differential Evolution for
Function Optimization. In 1996 Biennial Conference
of the North American Fuzzy Information Processing
Society (NAFIPS 1996), pages 519–523, Berkeley,
1996. IEEE.

[26] R. Storn. System Design by Constraint Adaptation
and Differential Evolution. IEEE Transactions on
Evolutionary Computation, 3(1):22–34, April 1999.

34


